125 research outputs found

    Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities

    Get PDF
    Metabolite exchanges in microbial communities give rise to ecological interactions that govern ecosystem diversity and stability. It is unclear, however, how the rise of these interactions varies across metabolites and organisms. Here we address this question by integrating genome-scale models of metabolism with evolutionary game theory. Specifically, we use microbial fitness values estimated by metabolic models to infer evolutionarily stable interactions in multi-species microbial ā€œgamesā€. We first validate our approach using a well-characterized yeast cheater-cooperator system. We next perform over 80,000 in silico experiments to infer how metabolic interdependencies mediated by amino acid leakage in Escherichia coli vary across 189 amino acid pairs. While most pairs display shared patterns of inter-species interactions, multiple deviations are caused by pleiotropy and epistasis in metabolism. Furthermore, simulated invasion experiments reveal possible paths to obligate cross-feeding. Our study provides genomically driven insight into the rise of ecological interactions, with implications for microbiome research and synthetic ecology.We gratefully acknowledge funding from the Defense Advanced Research Projects Agency (Purchase Request No. HR0011515303, Contract No. HR0011-15-C-0091), the U.S. Department of Energy (Grants DE-SC0004962 and DE-SC0012627), the NIH (Grants 5R01DE024468 and R01GM121950), the national Science Foundation (Grants 1457695 and NSFOCE-BSF 1635070), MURI Grant W911NF-12-1-0390, the Human Frontiers Science Program (grant RGP0020/2016), and the Boston University Interdisciplinary Biomedical Research Office ARC grant on Systems Biology Approaches to Microbiome Research. We also thank Dr Kirill Korolev and members of the Segre Lab for their invaluable feedback on this work. (HR0011515303 - Defense Advanced Research Projects Agency; HR0011-15-C-0091 - Defense Advanced Research Projects Agency; DE-SC0004962 - U.S. Department of Energy; DE-SC0012627 - U.S. Department of Energy; 5R01DE024468 - NIH; R01GM121950 - NIH; 1457695 - national Science Foundation; NSFOCE-BSF 1635070 - national Science Foundation; W911NF-12-1-0390 - MURI; RGP0020/2016 - Human Frontiers Science Program; Boston University Interdisciplinary Biomedical Research Office ARC)Published versio

    Quantifying biosynthetic network robustness across the human oral microbiome

    Get PDF
    Metabolic interactions, such as cross-feeding, play a prominent role in microbial communitystructure. For example, they may underlie the ubiquity of uncultivated microorganisms. We investigated this phenomenon in the human oral microbiome, by analyzing microbial metabolic networks derived from sequenced genomes. Specifically, we devised a probabilistic biosynthetic network robustness metric that describes the chance that an organism could produce a given metabolite, and used it to assemble a comprehensive atlas of biosynthetic capabilities for 88 metabolites across 456 human oral microbiome strains. A cluster of organisms characterized by reduced biosynthetic capabilities stood out within this atlas. This cluster included several uncultivated taxa and three recently co-cultured Saccharibacteria (TM7) phylum species. Comparison across strains also allowed us to systematically identify specific putative metabolic interdependences between organisms. Our method, which provides a new way of converting annotated genomes into metabolic predictions, is easily extendible to other microbial communities and metabolic products.https://www.biorxiv.org/content/10.1101/392621v1First author draf

    BowSaw: inferring higher-order trait interactions associated with complex biological phenotypes

    Get PDF
    Machine learning is helping the interpretation of biological complexity by enabling the inference and classification of cellular, organismal and ecological phenotypes based on large datasets, e.g. from genomic, transcriptomic and metagenomic analyses. A number of available algorithms can help search these datasets to uncover patterns associated with specific traits, including disease-related attributes. While, in many instances, treating an algorithm as a black box is sufficient, it is interesting to pursue an enhanced understanding of how system variables end up contributing to a specific output, as an avenue towards new mechanistic insight. Here we address this challenge through a suite of algorithms, named BowSaw, which takes advantage of the structure of a trained random forest algorithm to identify combinations of variables (ā€œrulesā€) frequently used for classification. We first apply BowSaw to a simulated dataset, and show that the algorithm can accurately recover the sets of variables used to generate the phenotypes through complex Boolean rules, even under challenging noise levels. We next apply our method to data from the integrative Human Microbiome Project and find previously unreported high-order combinations of microbial taxa putatively associated with Crohnā€™s disease. By leveraging the structure of trees within a random forest, BowSaw provides a new way of using decision trees to generate testable biological hypotheses.Accepted manuscrip

    Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems

    Get PDF
    Metabolic exchange mediates interactions among microbes, helping explain diversity in microbial communities. As these interactions often involve a fitness cost, it is unclear how stable cooperation can emerge. Here we use genome-scale metabolic models to investigate whether the release of ā€œcostlessā€ metabolites (i.e. those that cause no fitness cost to the producer), can be a prominent driver of intermicrobial interactions. By performing over 2 million pairwise growth simulations of 24 species in a combinatorial assortment of environments, we identify a large space of metabolites that can be secreted without cost, thus generating ample cross-feeding opportunities. In addition to providing an atlas of putative interactions, we show that anoxic conditions can promote mutualisms by providing more opportunities for exchange of costless metabolites, resulting in an overrepresentation of stable ecological network motifs. These results may help identify interaction patterns in natural communities and inform the design of synthetic microbial consortia.We thank Dr. Niels Klitgord for pioneering ideas that inspired launch of this work. We are also grateful to David Bernstein, Joshua E. Goldford, Meghan Thommes, Demetrius DiMucci, and all members of the Segre Lab for helpful discussions. A.R.P. is supported by a National Academies of Sciences, Engineering, and Medicine Ford Foundation Predoctoral Fellowship and a Howard Hughes Medical Institute Gilliam Fellowship. This work was supported by funding from the Defense Advanced Research Projects Agency (purchase request no. HR0011515303, contract no. HR0011-15-C-0091), the U.S. Department of Energy (grants DE-SC0004962 and DE-SC0012627), the NIH (grants 5R01DE024468, R01GM121950, and Sub_P30DK036836_P&F), the National Science Foundation (grants 1457695 and NSFOCE-BSF 1635070), MURI Grant W911NF-12-1-0390, the Human Frontiers Science Program (grant RGP0020/2016), and the Boston University Inter-disciplinary Biomedical Research Office. (National Academies of Sciences, Engineering, and Medicine Ford Foundation Predoctoral Fellowship; Howard Hughes Medical Institute Gilliam Fellowship; HR0011515303 - Defense Advanced Research Projects Agency; HR0011-15-C-0091 - Defense Advanced Research Projects Agency; DE-SC0004962 - U.S. Department of Energy; DE-SC0012627 - U.S. Department of Energy; 5R01DE024468 - NIH; R01GM121950 - NIH; Sub_P30DK036836_PF - NIH; 1457695 - National Science Foundation; NSFOCE-BSF 1635070 - National Science Foundation; W911NF-12-1-0390 - MURI Grant; RGP0020/2016 - Human Frontiers Science Program; Boston University Inter-disciplinary Biomedical Research Office)Published versio

    The Quasi-Steady State Assumption in an Enzymatically Open System

    Full text link
    The quasi-steady state assumption (QSSA) forms the basis for rigorous mathematical justification of the Michaelis-Menten formalism commonly used in modeling a broad range of intracellular phenomena. A critical supposition of QSSA-based analyses is that the underlying biochemical reaction is enzymatically "closed," so that free enzyme is neither added to nor removed from the reaction over the relevant time period. Yet there are multiple circumstances in living cells under which this assumption may not hold, e.g. during translation of genetic elements or metabolic regulatory events. Here we consider a modified version of the most basic enzyme-catalyzed reaction which incorporates enzyme input and removal. We extend the QSSA to this enzymatically "open" system, computing inner approximations to its dynamics, and we compare the behavior of the full open system, our approximations, and the closed system under broad range of kinetic parameters. We also derive conditions under which our new approximations are provably valid; numerical simulations demonstrate that our approximations remain quite accurate even when these conditions are not satisfied. Finally, we investigate the possibility of damped oscillatory behavior in the enzymatically open reaction.Comment: 28 pages, 12 figure

    Upon accounting for the impact of isoenzyme loss, gene deletion costs anticorrelate with their evolutionary rates

    Get PDF
    System-level metabolic network models enable the computation of growth and metabolic phenotypes from an organismā€™s genome. In particular, flux balance approaches have been used to estimate the contribution of individual metabolic genes to organismal fitness, offering the opportunity to test whether such contributions carry information about the evolutionary pressure on the corresponding genes. Previous failure to identify the expected negative correlation between such computed gene-loss cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a geneā€™s fitness contribution to an organism ā€œhere and nowā€ and the same geneā€™s historical importance as evidenced by its accumulated mutations over millions of years of evolution. Here we show that this negative correlation does exist, and can be exposed by revisiting a broadly employed assumption of flux balance models. In particular, we introduce a new metric that we call ā€œfunction-loss costā€, which estimates the cost of a gene loss event as the total potential functional impairment caused by that loss. This new metric displays significant negative correlation with evolutionary rate, across several thousand minimal environments. We demonstrate that the improvement gained using function-loss cost over gene-loss cost is explained by replacing the base assumption that isoenzymes provide unlimited capacity for backup with the assumption that isoenzymes are completely non-redundant. We further show that this change of the assumption regarding isoenzymes increases the recall of epistatic interactions predicted by the flux balance model at the cost of a reduction in the precision of the predictions. In addition to suggesting that the gene-to-reaction mapping in genome-scale flux balance models should be used with caution, our analysis provides new evidence that evolutionary gene importance captures much more than strict essentiality.This work was supported by the National Science Foundation, grant CCF-1219007 to YX; the Natural Sciences and Engineering Research Council of Canada, grant RGPIN-2014-03892 to YX; the National Institute of Health, grants 5R01GM089978 and 5R01GM103502 to DS; the Army Research Office - Multidisciplinary University Research Initiative, grant W911NF-12-1-0390 to DS; the US Department of Energy, grant DE-SC0012627 to DS; and by the Canada Research Chairs Program (YX). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. (CCF-1219007 - National Science Foundation; RGPIN-2014-03892 - Natural Sciences and Engineering Research Council of Canada; 5R01GM089978 - National Institute of Health; 5R01GM103502 - National Institute of Health; W911NF-12-1-0390 - Army Research Office - Multidisciplinary University Research Initiative; DE-SC0012627 - US Department of Energy; Canada Research Chairs Program)Published versio

    Species interactions differ in their genetic robustness

    Get PDF
    Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S. enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization.The authors thank reviewers for comments that substantially improved this manuscript. BG and DS were partially supported by grants from the US Department of Energy (DE-SC0004962) and NIH (R01GM089978 and R01GM103502). (DE-SC0004962 - US Department of Energy; R01GM089978 - NIH; R01GM103502 - NIH)Published versio

    Experiments and simulations on short chain fatty acid production in a colonic bacterial community

    Get PDF
    Understanding how production of specific metabolites by gut microbes is modulated by interactions with surrounding species and by environmental nutrient availability is an important open challenge in microbiome research. As part of this endeavor, we explore interactions between F. prausnitzii, a major butyrate producer, and B. thetaiotaomicron, an acetate producer, under three different in vitro media conditions in monoculture and coculture. In silico Genome-scale dynamic flux balance analysis (dFBA) models of metabolism in the system using COMETS (Computation of Microbial Ecosystems in Time and Space) are also tested for explanatory, predictive and inferential power. Experimental findings indicate enhancement of butyrate production in coculture relative to F. prausnitzii monoculture but defy a simple model of monotonic increases in butyrate production as a function of acetate availability in the medium. Simulations recapitulate biomass production curves for monocultures and accurately predict the growth curve of coculture total biomass, using parameters learned from monocultures, suggesting that the model captures some aspects of how the two bacteria interact. However, a comparison of data and simulations for environmental acetate and butyrate changes suggest that the organisms adopt one of many possible metabolic strategies equivalent in terms of growth efficiency. Furthermore, the model seems not to capture subsequent shifts in metabolic activities observed experimentally under low-nutrient regimes. Some discrepancies can be explained by the multiplicity of possible fermentative states for F. prausnitzii. In general, these results provide valuable guidelines for design of future experiments aimed at better determining the mechanisms leading to enhanced butyrate in this ecosystem.https://www.biorxiv.org/content/10.1101/444760v1https://www.biorxiv.org/content/10.1101/444760v1Othe

    Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    Get PDF
    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.This work was supported by the National Institutes of Health, R01GM103502-05 to CD, ZH and DS. Partial support was also provided by grants from the Office of Science (BER), U.S. Department of Energy (DE-SC0004962), the Joslin Diabetes Center (Pilot & Feasibility grant P30 DK036836), the Army Research Office under MURI award W911NF-12-1-0390, National Institutes of Health (1RC2GM092602-01, R01GM089978 and 5R01DE024468), NSF (1457695), and Defense Advanced Research Projects Agency Biological Technologies Office (BTO), Program: Biological Robustness In Complex Settings (BRICS), Purchase Request No. HR0011515303, Program Code: TRS-0 Issued by DARPA/CMO under Contract No. HR0011-15-C-0091. Funding for open access charge: National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. (R01GM103502-05 - National Institutes of Health; 1RC2GM092602-01 - National Institutes of Health; R01GM089978 - National Institutes of Health; 5R01DE024468 - National Institutes of Health; DE-SC0004962 - Office of Science (BER), U.S. Department of Energy; P30 DK036836 - Joslin Diabetes Center; W911NF-12-1-0390 - Army Research Office under MURI; 1457695 - NSF; HR0011515303 - Defense Advanced Research Projects Agency Biological Technologies Office (BTO), Program: Biological Robustness In Complex Settings (BRICS); HR0011-15-C-0091 - DARPA/CMO; National Institutes of Health)Published versio

    Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach

    Get PDF
    The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy) data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments (~10(12)) that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge
    • ā€¦
    corecore